O que é impedância acústica? Aplicações e exercícios
- 1461
- 433
- Conrad Schmidt
O impedância acústica o Impedância acústica específica é a resistência do material meios para a passagem de ondas sonoras. É constante para um certo meio, que vai de uma camada rochosa dentro da terra para o tecido biológico.
Denotando como impedância acústica z, de maneira matemática, ela precisa:
Z = ρ.v
figura 1. Quando uma onda sonora afeta a borda de dois meios diferentes, uma parte é refletida e outra é transmitida. Fonte: Wikimedia Commons. Cristobal Aeorum/CC BY-SA (https: // CreativeCommons.Org/licenças/BY-SA/4.0)Onde ρ é densidade e v a velocidade do som do meio. Esta expressão é válida para uma onda plana, movendo -se em um fluido.
Em unidades do sistema internacional, a densidade vem em kg/m3 e a velocidade em m/s. Portanto, as unidades de impedância acústica são kg/m2.s.
Da mesma forma, a impedância acústica é definida como o quociente entre pressão P e velocidade:
Z = p/v
Expressa dessa maneira, z é análogo à resistência elétrica r = v/i, onde a pressão representa o papel de tensão e acelera a da corrente. Outras unidades Z se fossem PA.s /m o n.VÓS3, completamente equivalente aos previamente dados.
[TOC]
Transmissão e reflexão da onda sonora
Quando você tem dois meios diferentes de impedâncias z1 e z2, Parte de uma onda sonora que afeta a interface de ambos pode ser transmitida e outra parte pode ser refletida. Esta onda refletida ou eco é a que contém informações importantes sobre o segundo meio.
Figura 2. Pulso incidente, pulso transmitido e pulso refletido. Fonte: Wikimedia Commons.A maneira pela qual a energia transportada pela onda é distribuída depende dos coeficientes de reflexão R e T TRANSMISSÃO, duas quantidades muito úteis para estudar a propagação da onda sonora. Para o coeficiente de reflexão é o quociente:
R = ir /Yoqualquer
Onde euqualquer É a intensidade da onda incidenter É a intensidade da onda refletida. Da mesma forma, você tem o coeficiente de transmissão:
T = it / Yoqualquer
Agora, pode -se demonstrar que a intensidade de uma onda plana é proporcional à sua amplitude para:
Pode servir a você: durômetro: para que serve, como funciona, peças, tiposI = (1/2) z.Ω2 .PARA2
Onde z é a impedância acústica do meio e ω é a frequência da onda. Por outro lado, a proporção entre a amplitude transmitida e a amplitude do incidente é:
PARAt/PARAqualquer = 2z1/(Z1 +Z2)
Que permite o quociente et /Yoqualquer É expresso em termos de amplitudes das ondas incidentes e transmitido como:
Yot /Yoqualquer = Z2PARAt2 / Z1PARAqualquer2
Através dessas expressões R e T são obtidas em termos de impedância acústica z Z.
Coeficientes de transmissão e reflexão
O quociente anterior é precisamente o coeficiente de transmissão:
T = (z2/Z1) [2.Z1/(Z1 +Z2)]2 = 4z1Z2 /(Z1 +Z2)2
Como as perdas não são contempladas, é cumprido que a intensidade do incidente é a soma da intensidade transmitida e a intensidade refletida:
Yoqualquer = Ir + Yot → (ir / Yoqualquer) + (Eut / Yoqualquer) = 1
Isso nos permite encontrar uma expressão para o coeficiente de reflexão em termos de impedâncias dos dois meios:
R + t = 1 → r = 1 - t
Realizando alguma álgebra para reorganizar os termos, o coeficiente de reflexão é:
R = 1 - 4z1Z2 /(Z1 +Z2)2 = (Z1 - Z2)2/(Z1 +Z2)2
E como no pulso refletido é a informação relacionada ao segundo meio, o coeficiente de reflexão é de grande interesse.
Assim, quando os dois meios têm uma grande diferença de impedância, o numerador da expressão anterior se torna maior. Então a intensidade da onda refletida é alta e contém boas informações sobre o meio.
Quanto à parte da onda transmitida a esse segundo meio, ela é progressivamente atenuada e a energia é dissipada como calor.
Aplicações e exercícios
Os fenômenos de transmissão e reflexão dão origem a várias aplicações muito importantes, por exemplo, o sonar desenvolvido durante a Segunda Guerra Mundial e que serve para detectar objetos. A propósito, alguns mamíferos como morcegos e golfinhos têm um sistema de sonar construído.
Essas propriedades também são amplamente utilizadas para estudar o interior da Terra nos métodos de prospecção sísmica, na obtenção de imagens médicas por ultrassom, a medição da densidade óssea e captura imagens de diferentes estruturas em busca de falhas e defeitos.
Pode servir a você: Thomson Atomic Model: características, postulações, partículas subatômicasA impedância acústica também é um parâmetro importante ao avaliar a resposta sonora de um instrumento musical.
- Exercício resolvido 1
A técnica de ultrassom para obter imagens de tecido biológico utiliza pulsos de som de alta frequência. Os ecos contêm informações sobre os órgãos e tecidos que estão passando, esse software é responsável por traduzir em uma imagem.
Um pulso de ultrassom é influenciado à interface gordura-musculus. Com os dados fornecidos, encontre:
a) a impedância acústica de cada tecido.
b) A porcentagem de ultrassom refletida na interface entre gordura e músculo.
Gordo
- Densidade: 952 kg/m3
- Velocidade do som: 1450 m/s
Músculo
- Densidade: 1075 kg/m3
- Velocidade do som: 1590 m/s
Solução para
A impedância acústica de cada tecido está substituindo na fórmula:
Z = ρ.v
Desta maneira:
Zgordo = 952 kg/m3 x 1450 m/s = 1.38 x 106 kg/m2.s
Zmúsculo = 1075 kg/m3 x 1590 m/s = 1.71 x 106 kg/m2.s
Solução b
Para encontrar a porcentagem de intensidade refletida na interface dos dois tecidos, o coeficiente de reflexão dado por:
R = (z1 - Z2)2/(Z1 +Z2)2
Aqui zgordo = Z1 e zmúsculo = Z2. O coeficiente de reflexão é uma quantidade positiva, que é garantida pelos quadrados na equação.
Substituindo e avaliando:
R = (1.38 x 106 - 1.71 x 106 )2 / (1.38 x 106 + 1.71 x 106 )2 = 0.0114.
Ao multiplicar por 100, teremos a porcentagem refletida: 1.14 % da intensidade do incidente.
- Exercício resolvido 2
Uma onda sonora tem um nível de intensidade 100 decibéis e normalmente afeta a superfície da água. Determinar o nível de intensidade da onda transmitida e a da onda refletida.
Pode atendê -lo: atrito viscoso (força): coeficiente e exemplosDados:
Água
- Densidade: 1000 kg/m3
- Velocidade do som: 1430 m/s
Ar
- Densidade: 1.3 kg/m3
- Velocidade do som: 330 m/s
Solução
O nível de intensidade dos decibéis de uma onda sonora é indicado como L, é adimensional e é dado pela fórmula:
L = 10 log (i /10-12)
Levantando às 10 de ambos os lados:
10 L/10 = I /10-12
Como L = 100, resulta em:
I/10-12 = 1010
As unidades de intensidade são dadas em termos de poder por unidade de área. No sistema internacional, eles são watt/m2. Portanto, a intensidade da onda incidente é:
Yoqualquer = 1010 . 10-12 = 0.01 w/m2.
Para encontrar a intensidade da onda transmitida, o coeficiente de transmissão é calculado e depois multiplicado pela intensidade do incidente.
As respectivas impedâncias são:
Zágua = 1000 kg/m3 x 1430 m/s = 1.43 x 106 kg/m2.s
Zar = 1.3 kg/m3 x 330 m/s = 429 kg/m2.s
Substituindo e avaliando em:
T = 4z1Z2 /(Z1 +Z2)2 = 4 × 1.43 x 106 X 429 / (1.43 x 106 + 429)2 = 1.12 x 10-3
Então, a intensidade da onda transmitida é:
Yot = 1.12 x 10-3 x 0.01 w/m2 = 1.12 x 10-5 W/m2
O nível de intensidade dos decibéis é calculado por:
eut = 10 log (it /10-12) = 10 log (1.12 x 10-5 / 10-12) = 70.3 dB
Por sua vez, o coeficiente de reflexão é:
R = 1 - t = 0.99888
Com isso, a intensidade da onda refletida é:
Yor = 0.99888 x 0.01 w/m2 = 9.99 x 10-3 W/m2
E seu nível de intensidade é:
eut = 10 log (ir /10-12) = 10 log (9.99 x 10-3 / 10-12) = 100 dB
Referências
- Andriessen, m. 2003. Curso de Física do HSC. Jacaranda.
- Baranek, l. 1969. Acústica. Segunda edição. Editorial hispânico americano.
- Kinsler, l. 2000. Fundamentos da acústica. Wiley e Sons.
- Lowrie, w. 2007. Geofísica fundamental. 2º. Edição. Cambridge University Press.
- Wikipedia. IMPEDÂNCIA ACÚSTICA. Recuperado de: em.Wikipedia.org.
- « Psicofisiologia que estudos, objetivos e métodos
- Peças de células galvânicas, como funciona, aplicações, exemplos »